Parental Selection Based on Breeding Value of Dura x Tenera Bunch Component

Main Article Content

Annisa Sitepu
Yurna Yenni
Sujadi

Abstract

Breeding value is the average effect of genes transmitted from parents to their offspring. It can be used as a selection criterion to select superior genotypes. The purpose of this study is to evaluate the performance of the parents through their progenies. The observations were conducted using 21 Dura x Tenera progenies planted in Dolok Sinumbah, PT. Perkebunan Nusantara IV, North Sumatra. Based on the dura’s breeding value, D5 and D6 have the potential to produce offspring that have thick mesocarp with high oil content. On the other hand, T1 tenera has the potential to produce F1 hybrids that have thick mesocarp to fruit with thin shells. The T5 and T6 teneras can be used to produce hybrids with high oil content.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sitepu, A., Yenni, Y., & Sujadi. (2022). Parental Selection Based on Breeding Value of Dura x Tenera Bunch Component. Jurnal Penelitian Kelapa Sawit, 30(1), 15-26. https://doi.org/10.22302/iopri.jur.jpks.v30i1.158
Section
Articles

References

Adhikari, B.N., J. Shrestha, B. Dhakal, B.P. Joshi, and N.R. Bhatta. 2018. Agronomic Performance And Genotypic Diversity For Morphological Traits Among Early Maize Genotypes. Int. J. Appl. Biol. 2(2): 33–43. doi: 10.20956/ijab.v2i2.5633.
Arolu, I. W., M. Y. Rafii, M. Marjuni, M. M. Hanafi, Z. Sulaiman, H. A. Rahim, M. I. Z. Abidin, M. D. Amiruddin, A. K. Din, and R. Nookiah. 2017. Breeding Of High Yielding and Dwarf Oil Palm Planting Materials Using Deli Dura × Nigerian Pisifera Population. Euphytica, 213(7). DOI:10.1007/s10681-017-1943-z.
Asfaw, A., D. S. Aderonmu, K. Darkwa, D. DeKoeyer, P. Agre, A. Abe, B. Olasanmi, P. Adebola, R. Asiedu. 2019. Genetic Parameters, Prediction, Andselection In A White Guinea Yam Early-Generation Breeding Population Using Pedigree Information. CropScience. DOI: 10.1002/csc2.20382
Astari, R.P., Rosmayati, and M. Basyuni. 2016. Kemajuan Genetik, Heritabilitas dan Korelasi Beberapa Karakter Agronomis Progeni Kedelai F3 Persilangan Anjasmoro dengan Genotipe Tahan Salin. J. Pertan. Trop. 3(1): 52–61.
Barcelos E., S. A Rios, R. N. V Cunha, R. Lopes, S. Y. Motoike, E. Babiychuk, A. Skirycz and S. Kushnir. 2015. Oil Palm Natural Diversity And The Potential For Yield Improvement. Front. Plant Sci. 6:190. DOI: 10.3389/fpls.2015.00190
Basyuni, M., N. Amri, L. Putri, I. Syahputra, dan D. Arifiyanto. 2017. Characteristics Of Fresh Fruit Bunch Yield And The Physicochemical Qualities Of Palm Oil During Storage in North Sumatra, Indonesia. Indones. J. Chem., 17(2), 182–190.
Constantin, M., S. Ridwani, M. Syukur, and A. W. B. Suwarno. 2017. Performance, Heritability and Genetic Advance for Oil Yield and some Economical Characters in Oil Palm (Elaeis guineensis Jacq) of Cameroon. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 45(2), 212. DOI:10.24831/jai. v45i2.14110
Constantin, M., M. Syukur, W. B. Suwarno, and G. N. Ntsefong. 2016. Evaluation of Combining Ability and Genetic Variance in Introgressed Widikum Elaeis guineensis Jacq. of Cameroon Using North Carolina II Mating Design. 06(08), 9275-9281.
Corley, R. H. V., dan P. B. Tinker. 2016. The Oil Palm (Fifth Edition). Wiley Blackwell.
Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics 4th Edition. Addison Wesley Longman, Harlow
Faid-Allah, E. (2019). Estimating Breeding Values For Milk Production And Mastitis Traits For Holstein Cattle In Egypt. Jurnal Ilmu Ternak Dan Veteriner, 23(4), 159-167. DOI: 10.14334/jitv.v23i4.1845
Fonguimgo, T.F., M. M. Hanafi, A. S. Idris, M. Sahebi, and S. R. Syed-Omar. 2015. Comparative Study Of Lignin In Roots Of Different Oil Palm Progenies In Relation To Ganoderma Basal Stem Rot Disease. Journal of Oil Palm Research, 27, 128-134.
Junaidah, J., M. Y. Rafii, C. W. Chin, and G. Saleh. 2011. Performance of Tenera Oil Palm Population Derived from Crosses Between Deli Dura and Pisifera from Different Sources on Inland Soils. Journal of Oil Palm Research, 23 (December), 1210-1221.
Johnson, H.W., H.F Robinson, R.E Comstock. 1955. Estimation Of Genetic And Environmental Variability in Soybeans. Agronomy J. 47: 314–318.
Lim, C. C., K.W. Teo, V. Rao, and C. C. Chia. 2003. Performances of Some Pisiferas of Binga, Ekona, URT and Angolan Origins: Part 1 - Breeding Background and Fruit Bunch Traits. Journal of Oil Palm Research, 15(1), 21-31.
Majhi, P.K. 2019. Heritability and Its Genetic Worth for Plant Breeding. In: Saidaiah, P., editor, Advances in Genetics and Plant Breeding. AkiNik Publications, India. p. 69–75
Musa B. B., G. B. Saleh, and S. G. Loong. 2004. Genetic Variability and Broad-Sense Heritability in Two Deli-AVROS DxP Breeding Populations of The Oil Palm (Elaeis guineensis Jacq.). SABRAO. Journal of Breeding and Genetics 36: 13-22.
Noh, A., M. Y. Rafii, A. Mohd Din, A. Kushairi, A. Norziha, N. Rajanaidu, M. A. Latif, and M. A. Malek. 2014. Variability and Performance Evaluation of Introgressed Nigerian Dura X Deli Dura Oil Palm Progenies. Genetics and Molecular Research, 13(2), 2426-2437. DOI:10.4238/2014.April.3.15
Noh, A., M. Y. Rafii, G. Saleh, A. Kushairi, and M. A. Latif. 2012. Genetic Performance and General Combining Ability of Oil Palm Deli Dura x AVROS Pisifera Tested on Inland Soils. The Scientific World Journal, 2012. DOI:10.1100¬/2012/792601
Pal, A., and A. K. Chakravarty. 2020. Heritability, Repeatability, and Genetic Correlation of Disease-Resistance Traits. Genetics and Breeding for Disease Resistance of Livestock, 245-258. DOI:10.1016/b978-0-12-816406-8.00017-6
Perez, R., 2017. [Thesis] Analyzing and Modelling The Genetic Variability of Aerial Architecture and Light Interception of Oil Palm (Elaeis guineensis Jacq). Agricultural sciences. Montpellier SupAgro, 2017. English. NNT: 2017NSAM0001. tel-0159¬1586
Puspita, F., Hadiwiyono, S.H. Poromorto, and D.I. Roslim. 2020. Induced resistance by Bacillus subtilis on oil palm seedling infected by Ganoderma boninense. Biodiversitas 21(1): 28–33. doi: 10.13057/biodiv/d210105.
Posma, E. 2006. Implications of The Difference Between True and Predicted Breeding Values for The Study of Natural Selection And Micro-Evolution. Journal of Evolutionary Biology, 19(2), 309–320. DOI:10.1111/j.1420-9101.2005.01007.x
Quddus, M. R., M. Rahman, N. Nusrat, S. Debsharma, R. Disha, Md Hasan, T. Aditya, K. Iftekharuddaula, B. Collard. 2019. Estimating Pedigree-Based Breeding Values And Stability Parameters Of Elite Rice Breeding Lines For Yield Under Salt Stress During The Boro Season in Bangladesh. Plant Breed. Biotechnol. 7, 257–271. DOI: 10.9787/PBB.2019.7.3.257
Rafii, M. Y., N. Rajanaidu, B. S. Jalani, , and A. Kushairi. 2002. Performance and Heritability Estimations on Oil Palm Progenies Tested in Different Environments. Journal of Oil Palm Research, 14(1), 15-24.
Rutkoski, J. E. 2019. A Practical Guide To Genetic Gain. In Advances in Agronomy (1st ed., Vol. 157). Elsevier Inc. DOI:10.1016/bs.agron.2019.05.001
Setiowati, R. D., E. Ritter, S. Wening, Y. Yenni, and E. Suprianto. 2017. Genetic map construction of IOPRI’s oil palm (Elaeis guineensis Jacq.) Mapping Population Derived from SP540T by Using Restriction Site Associated DNA (RAD) Markers. Jurnal Penelitian Kelapa Sawit, 25(1), 11-20. DOI: 10.22302¬/iopri.jur.jpks.¬v25i1.21
Shivasubramanian S, and M. Menon. 1973. Heterosis and Inbreeding Depression in Rice. Madras Agric J 60: 1139.
Skøt, L., and N. F. Grinberg. 2017. Genomic Selection in Crop Plants. in Encyclopedia of Applied Plant Sciences 2nd Edition (Vol. 3). Elsevier. DOI:10.1016/B978-0-12-394807-6.00228-8
Soh, A. C., S. Mayes, and J. A. Roberts. 2017. Oil Palm Breeding: Genetics and Ge-nomics. Taylor and Francis Group. DOI:10.1201/9781315119724
Solin, N. W. N. M., Sobir, and N.cTouran-Mathius. 2013. Keragaman Genetik Populasi Tetua Saudara Kandung (Sibs) Kelapa Sawit Dura Deli Berdasarkan Penanda DNA Mikrosatelit. Buletin Palma, 14(2), 100-108. DOI:10.21082/bp.v14n2.2013. 100-108
Sritharan, K., M Subramaniam, X. Arulandoo, and M. R. Yusop. 2017. Yield and Bunch Quality Component Comparison Between Two-Way Crosses and Multi-Way Crosses of DxP Oil Palm Progenies. Sains Malaysiana, 46(9), 1587-1595. DOI:10.17576/jsm-2017-4609-30
Sujadi, H.A Hasibuan, dan M. Rivani. 2017. Karakterisasi Minyak Selama Pematangan Buah pada Tanaman Kelapa Sawit (Elaeis guineensis Jacq) Varietas DxP Simalungun. J. Pen. Kelapa Sawit, 25(2), 59-70. DOI:10.22302/¬iopri.jur¬.jpks.-v25i2.25.
Suprianto, E., N. Supena, Y. Yenni, H. A. Siregar, Sujadi. 2019. Mengenal Lebih Dekat Varietas Kelapa Sawit PPKS. Pusat Penelitian Kelapa Sawit
Swaray, S., M. D. Amiruddin, M. Y. Rafii, S. Jamian, M. F. Ismail, M. Jalloh, M. Marjuni, M. M. Mohamad, and O. Yusuff. 2020. Influence of Parental Dura and Pisifera Genetic Origins on Oil Palm Fruit Set Ratio and Yield Components in Their D×P Progenies. Agronomy, 10(11), 1-30. DOI:10.3390/agronomy/10111793
Syukur M., Sujiprihati S., Yunianti R. 2015. Teknik Pemuliaan Tanaman. Penebar Swadaya, Jakarta.
Van der Werf, H. J. 2013. Principles of Estimation Of Breeding Values. In H. J. van der Werf (Ed.), Genetic Evaluation And Breeding Program Design (pp. 1-18). Armidale, NSW, Australia: School of Environmental and Rural Science, University of New England
Warmadewi, D.A., I.G.L. Oka, N.P. Sarini, I.N. Ardika, M. Dewantari. 2015. Bahan Ajar Ilmu Pemuliaan Ternak. Program Studi Peternakan Fakultas Peternakan Universitas Udayana, Denpasar.
Yenni, Y., L. F. Budiman, Jayusman, D. Asmono. 2002. Diversitas Genetik Plasma Nutfah Kelapa Sawit Tenera Origin Binga. J. Pen. Kelapa Sawit, 10(1):23-30
Zapata-Valenzuela, J., Whetten, R. W., Neale, D., McKeand, S., & Isik, F. (2013). Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. G3 (Bethesda, Md.), 3(5), 909–916. DOI: 10.1534/g3.113.005975.

Most read articles by the same author(s)