Technique to Estimate Oil Palm Transpiration Using Heat Ratio Method
Main Article Content
Abstract
The estimation of plant transpiration is one of many methods to determine plant water requirements. Heat Ratio Method (HRM) is a method that can estimate transpiration directly under field conditions by measuring sap flow rate. This research was conducted to estimate oil palm water requirements based on transpiration estimation using HRM. The study was located in Medan, North Sumatra, and was employed five years old palm with 48 fronds. A total of six Sap Flow Meter (SFM) were installed on the fronds no. 1, 9, 17, 25, 33, and 41. The results showed that the sap flow rate of the top three fronds (no. 1, 9, and 17) was higher than the lower fronds. The transpiration rate was decreased at the lower fronds position. Furthermore, the highest transpiration occurred in frond no. 1, 0.890 liters/day, while the lowest was observed in frond no. 41 i.e. 0.510 liters/day. Assuming that each frond sampled represents fronds at the same level, the average daily transpiration was 31.933 liters/day/palm or equivalent to 0.457 mm/day/palm.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Indonesian Journal of Oil Palm Research can be accessed freely by anyone (open access) to introduce more journals to the public.
- The results of the research can be used freely with the inclusion of Indonesian Journal of Oil Palm Research as a source of utilization.
References
Bleby, T. M., Burgess, S. S. O., & Adams, M. A. 2004. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Functional Plant Biology, 31, 645–658. https://doi.org/10.1071/FP04013
Brum, M., Oliveira, R. S., López, J. G., Licata, J., Pypker, T., Chia, G. S., Tinôco, R. S., & Asbjornsen, H. 2020. Effects of irrigation on oil palm transpiration during ENSO-induced drought in the Brazilian Eastern Amazon. Agricultural Water Management, xxx(xxxx), 1–11. https://doi.org/10.1016/j.agwat.2020.106569
Carr, M. K. v. 2011. The water relations and irrigation requirements of oil palm (Elaeis guineensis): A review. Expl. Agric., 47(4), 629–652. https://doi.org/10.1017/S0014479711000494
Darwis, A., Nurrochmat, D. R., Massijaya, M. Y., Nugroho, N., Alamsyah, E. M., Bahtiar, E. T., & Safe’i, R. 2013. Vascular bundle distribution effect on density and mechanical properties of oil palm trunk. Asian Journal of Plant Sciences, 12(5), 208–2013. http://repositorio.unan.edu.ni/2986/1/5624.pdf
Dong, W., Li, C., Hu, Q., Pan, F., Bhandari, J., & Sun, Z. 2020. Potential Evapotranspiration Reduction and Its Influence on Crop Yield in the North China Plain in 1961-2014. Advances in Meteorology, 2020. https://doi.org/10.1155/2020/3691421
Doorenbos, J., & Pruitt, W. O. 1977. Crop water requirements crop water requirements. In Irrigation and Drainage paper (Issue 24).
Ferrara, G., & Flore, J. A. 2003. Comparison between different methods for measuring transpiration in potted apple tress. Biologia Plantarium, 46(1), 41–47. https://doi.org/https://doi.org/10.1023/A:1022301931508
Garnier, E., Berger, A., & Martin, M. 1988. How to Estimate Leaf Transpiration from Water Potential Measurements ? Flora, 181, 131–135. https://doi.org/10.1016/S0367-2530(17)30358-4
Haijun, L., Cohen, S., Lemcoff, J. H., Israeli, Y., & Tanny, J. 2015. Sap flow, canopy conductance and microclimate in a banana screenhouse. Agricultural and Forest Meteorology, 201, 165–175. https://doi.org/10.1016/j.agrformet.2014.11.009
Ismanov, M., Francis, P., Henry, C., & Espinoza, L. 2019. Relations among Sap Flow, Soil Moisture, Weather, and Soybean Plant Parameters in High Water Demand and Final Growth Stages. Agricultural Sciences, 10, 371–385. https://doi.org/10.4236/as.2019.103030
Kirkham, M. B. 2014. Sap Flow. Principles of Soil and Plant Water Relations, Chapter 20, 375–390. https://doi.org/10.1016/b978-0-12-420022-7.00021-5
Kobayashi, N., Kumagai, T., Miyazawa, Y., Matsumoto, K., Tateishi, M., Lim, T. K., Mudd, R. G., Ziegler, A. D., Giambelluca, T. W., & Yin, S. 2014. Transpiration characteristics of a rubber plantation in central Cambodia. Tree Physiology, 34, 285–301. https://doi.org/10.1093/treephys/tpu009
Kohler, M., Hanf, A., Barus, H., Hendrayanto, & Holscher, D. 2014. Cacao trees under different shade tree shelter : effects on water use. Agroforest Syst (2014), 88, 63–73. https://doi.org/10.1007/s10457-013-9656-3
Legros, S., Mialet-Serra, I., Caliman, J.-P., Siregar, F. A., Clément-Vidal, A., & Dingkuhn, M. 2009. Phenology and growth adjustments of oil palm (Elaeis guineensis) to photoperiod and climate variability. Annals of Botany, 104(6), 1171–1182. https://doi.org/10.1093/aob/mcp214
McJannet, D., Fitch, P., Disher, M., & Wallace, J. 2007. Measurements of transpiration in four tropical rainforest types of north Queensland , Australia. Hydrological Processes, 21, 3549–3564. https://doi.org/10.1002/hyp.6576
Meyer, N., Bergez, J. E., Constantin, J., & Justes, E. 2019. Cover crops reduce water drainage in temperate climates: A meta-analysis. Agronomy for Sustainable Development, 39(1). https://doi.org/10.1007/s13593-018-0546-y
Milne, R., Deans, J. D., Ford, E. D., Jarvis, P. G., Leverenz, J., & Whitehead, D. 1985. A Comparison of two methods of estimating transpiration rates from a sitka spruce plantation. Boundary-Layer Meteorology, 32(1), 155–175.
Murray, F. 1967. On the computation of saturation vapor pressure. J. Appl. Meteorol., 6, 203–204.
Nascimento, P. T., Castro, G. F. de, & Júnior, J. C. F. B. 2018. Water requirement of irrigated and rainfed crops. International Journal of Hydrology, 2(3), 338–341. https://doi.org/10.15406/ijh.2018.02.00093
Niu, F., Roll, A., Hardanto, A., Meijide, A., Kohler, M., Hendrayanto, & Holscher, D. 2015. Oil palm water use: calibration of a sap flux method and a field measurement scheme. Tree Physiology, 35(5), 563–573. https://doi.org/10.1093/treephys/tpv013
Pereira, L. S., & Alves, I. 2013. Crop Water Requirements. In Reference Module in Earth Systems and Environmental Sciences (Issue May). Elsevier Inc. https://doi.org/10.1016/b978-0-12-409548-9.05129-0
Pradiko, I., Darlan, N., & Santoso, H. 2014. Teknik konservasi tanah dan air di perkebunan kelapa sawit dalam menghadapi perubahan iklim. Prosiding Seminar Nasional Milad FP UISU.
Pradiko, I., Farrasati, R., Rahutomo, S., Ginting, E. N., Candra, D. A. A., Krissetya, Y. A., & Mahendra, Y. S. 2020. Pengaruh iklim terhadap dinamika kelembaban tanah di piringan pohon tanaman kelapa sawit. WARTA PPKS, 25(1), 39–51.
Röll, A., Niu, F., Meijide, A., Hardanto, A., Knohl, A., & Hölscher, D. 2015. Transpiration in an oil palm landscape : effects of palm age. 5619–5633. https://doi.org/10.5194/bg-12-5619-2015
Ruiz-Penalver, L., Vera-repullo, J. A., Jiménez-buendía, M., Guzman, I., & Molina-Martinez, J. M. 2014. Development of an innovative low cost weighing lysimeter for potted. Agricultural Water Management, 151, 103–113. https://doi.org/10.1016/j.agwat.2014.09.020
Steppe, K., Vandegehuchte, M. W., Tognetti, R., & Mencuccini, M. 2015. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiology, 35, 341–345. https://doi.org/10.1093/treephys/tpv033
Suresh, K., Nagamani, C., Kantha, D. L., & Kumar, M. K. 2012. Changes in photosynthetic activity in five common hybrids of oil palm ( Elaeis guineensis Jacq .) seedlings under water deficit. Photosynthetica, 50(4), 549–556. https://doi.org/10.1007/s11099-012-0062-2
Wang, Y., Cao, G., Wang, Y., Webb, A. A., Yu, P., & Wang, X. 2019. Response of the daily transpiration of a larch plantation to variation in potential evaporation, leaf area index and soil moisture. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-41186-1
Zhang, D., Du, Q., Zhang, Z., Ji, X., Song, X., & Li, J. 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Scientific Reports, August 2016, 1–11. https://doi.org/10.1038/srep43461
Zhang, Q., Jia, X., Shao, M., Zhang, C., Li, X., & Ma, C. 2018. Sap flow of black locust in response to short-term drought in southern Loess Plateau of China. Scientific Reports, 8, 1–10. https://doi.org/10.1038/s41598-018-24669-5